

EQUINE DISEASE SURVEILLANCE

2025 Q4 QUARTERLY REPORT

Produced by:

UNIVERSITY OF
CAMBRIDGE
Department of Veterinary
Medicine

VOLUME: 21, No. 4
Oct - Dec 2025

INTRODUCTION

Welcome to the Equine Disease Surveillance Report for the fourth quarter of 2025. This report is produced by Equine Infectious Disease Surveillance (EIDS), based within the Department of Veterinary Medicine at the University of Cambridge.

National disease data are gathered from multiple diagnostic laboratories and veterinary practices across the United Kingdom, offering a detailed overview of the occurrence of equine infectious diseases. Because the global equine population is highly interconnected through international trade and travel, countries routinely collaborate on infectious disease surveillance to share information and issue timely alerts. This report summarises both national and international findings.

We welcome comments and feedback, as well as suggestions or contributions for future focus articles. Previous reports can be found at www.equinesurveillance.org, and you can receive future quarterly reports free of charge by contacting equinesurveillance@vet.cam.ac.uk.

HIGHLIGHTS IN THIS ISSUE

NEWS ARTICLES:

- Equine Influenza: navigating recent UK vaccination rule changes with optimal protection
- EIDS welcomes two new team members

FOCUS ARTICLE:

- A field case report of orthoflavivirus-associated neurological disease in a UK horse

TABLE OF CONTENTS

<u>NEWS ARTICLES</u>	1
<u>FOCUS ARTICLE: A FIELD CASE REPORT OF ORTHOFLAVIVUS-ASSOCIATED NEUROLOGICAL DISEASE IN A UK HORSE</u>	6
<u>UK INFECTIOUS DISEASE REPORTS</u>	10
<u>EQUINE HERPES VIRUS</u>	11
<u>EQUINE INFLUENZA</u>	13
<u>SURVEILLANCE OF EQUINE STRANGLES</u>	15
<u>EQUINE GRASS SICKNESS SURVEILLANCE</u>	16
<u>REDWATCH REDWORM SURVEILLANCE</u>	17
<u>UK LABORATORY REPORT</u>	18
<u>UK REPORT ON POST-MORTEM EXAMINATIONS</u>	27
<u>ICC 2025 Q4 SUMMARY REPORT</u>	31
<u>ACKNOWLEDGEMENTS</u>	33

NOTE:

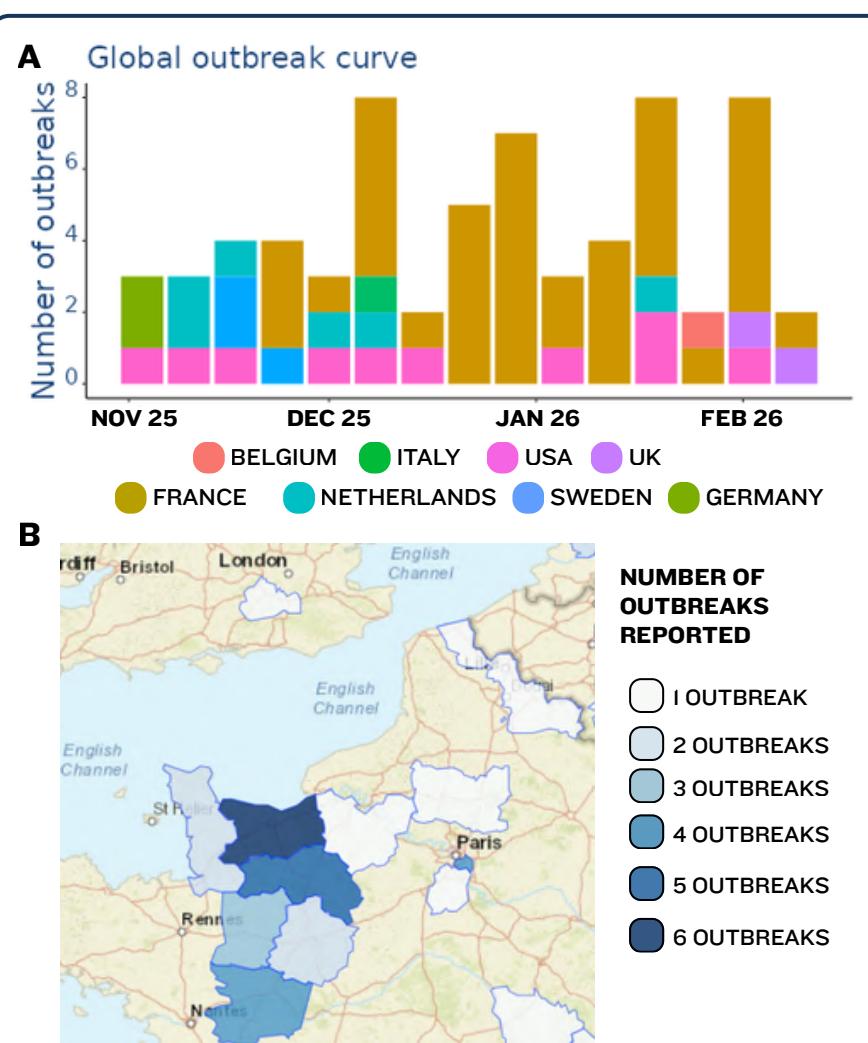
The data presented in this report must be interpreted with caution, as there is likely to be some bias in the way that samples are submitted for laboratory testing. For example, they are influenced by factors such as owner attitude or financial constraints, or are being conducted for routine screening as well as clinical investigation purposes. Consequently, these data do not necessarily reflect true disease frequency within the equine population of UK.

WITH THANKS TO THE FOLLOWING SUPPORTERS

Department
for Environment
Food & Rural Affairs

Llywodraeth Cymru
Welsh Government

Department of
Agriculture, Environment
and Rural Affairs


Scottish Government
Riaghaltas na h-Alba
gov.scot

EQUINE INFLUENZA: NAVIGATING RECENT UK VACCINATION RULE CHANGES WITH OPTIMAL PROTECTION

With effect from 1 January 2026, British Eventing (BE) has officially transitioned its equine influenza (EI) vaccination requirements for national competitions. The previous mandate for a six-monthly booster has been replaced by an annual (12-monthly) requirement.

While this aligns with other British governing bodies including British Showjumping (BS), British Dressage (BD) and British Riding Clubs, the Equine Infectious Disease Surveillance (EIDS) team are issuing a cautionary note to competitors and the wider community.

Although we have not been aware of much EI activity in the UK in the latter part of 2025, this is in contrast to an emerging situation that we have been monitoring in France. Our EquiFluNet global surveillance initiative has noted a rise in EI reports from RESPE, the French equine disease surveillance network. Forty-one confirmed reports of EI have been recorded since 4 November 2025 and 32% (n= 78) of these outbreaks have been reported since 19 December 2025, indicating an active and accelerating spike in flu activity (Figure 1a). Thirty (73%) of these 41 outbreaks were located in Northern France (Figure 1b).

Notably, on 2 February 2026, EIDS reported a case of EI on a premises in Surrey. The affected animal was a vaccinated four-year-old non-Thoroughbred that was reported to have recently returned from Europe. This case highlights the need for increased monitoring of animals moving between countries and premises and the implications of appropriate quarantine and biosecurity measures.

Figure 1:
(A) A timeline of international reports of outbreaks of Equine Influenza (EI) reported by EquiFluNet (www.equine surveillance.org/equinflunet) and (B) French departments where EI outbreaks were reported by RESPE, both between 04 Nov 2025 and 12 Feb 2026.

NEWS ARTICLES

This increase in EI activity serves as a timely reminder that the 2019 UK EI epidemic that stopped horseracing in Britain for six days in February that year, was preceded by increased disease activity first noted in France in late 2018/early 2019. Therefore, while regulatory bodies may set longer minimum booster vaccination requirements for competition entry, EIDS continues to recommend six-monthly EI boosters. This is especially true for horses that travel frequently and compete regularly, thereby bringing them in close proximity to many and varied horses. In addition, even horses that remain resident on premises should also be considered at higher risk of exposure if those premises regularly receive new arrivals or horses are regularly returning after attending competitions.

More regular booster vaccination ensures antibody levels remain high enough to reduce both the severity of clinical signs and the amount of EI virus that is shed, should a horse be exposed. In light of the currently increased level of EI activity in France, EIDS advises the following guidelines for UK horse and yard owners:

Owners and yards should maintain six-monthly booster vaccination schedules, especially if horses are travelling or mixing with horses from different regions or countries

At the present time extreme caution should be taken when purchasing horses from, or travelling them to France, particularly the more affected northern areas

New arrivals or returning horses should be strictly quarantined with regular health monitoring, such as twice daily temperature checks, applied for at least two weeks before mixing them with the resident population

Yard and horse owners must stay alert for any signs of coughing, fever and inappetence or nasal discharge. If clinical signs are noted, veterinary assistance should be sought immediately

Maintaining high biosecurity standards is a collective effort that protects the health and welfare of the entire UK equine population. For more information see our horse owner resource: www.equinesurveillance.org/landing/resources/What_to_do_with_equine_flu2024V1.pdf

THE HBLB SURVEILLANCE SCHEME

The HBLB equine influenza testing surveillance scheme provides **free of charge PCR testing for suspected cases of equine flu in the UK**. UK equine vets can sign up to the service here:

www.equinesurveillance.org/fluenrol

For more information see our endemic reporting section (page 13).

NEWS ARTICLES

EIDS WELCOMES TWO NEW TEAM MEMBERS

EIDS would like to welcome and introduce two new team members, Hattie Bell and Tegan McGilvray. Hattie and Tegan join the team as our latest veterinary surgeons and epidemiologists covering maternity leave for Fleur Whitlock. They will work closely with vets to aid with infectious disease diagnoses and outbreak control and prevention. During their time with us they will also assist with the day to day running of our surveillance schemes whilst managing their own dedicated EIDS projects.

TEGAN MCGILVRAY

BVSc CertAVP(EM) MSc
MVetMed DipECEIM MRCVS

Tegan qualified from the University of Pretoria, Onderstepoort, South Africa, in 2008 and moved to the UK shortly after. She initially worked as a small animal vet before spending several years in equine practice. She later completed an MSc in Veterinary Epidemiology through the Royal Veterinary College (RVC) and the London School of Hygiene and Tropical Medicine, and a residency in Equine Internal Medicine at the RVC. In 2021, she became an ECEIM Diplomate and RCVS and EBVS® Specialist in Equine Internal Medicine. She is currently undertaking a PhD at the RVC, investigating equine movement and its implications for infectious disease transmission. Tegan is excited to combine her passion for internal medicine, epidemiology, and infectious disease, applying clinical and analytical expertise to her role at EIDS.

HATTIE BELL

Hattie graduated from the Cambridge Veterinary School in 2012, beginning her career with an imaging internship at Rossdales Diagnostic Centre, Newmarket. She subsequently transitioned into Thoroughbred stud practice, gaining valuable international experience during two seasons in New South Wales, Australia, before returning to Rossdales and Partners as a permanent member of the team.

Building on a clinical focus in neonatal and reproductive medicine, Hattie earned her Certificate in Equine Stud Medicine in 2017. She is now looking forward to providing essential support to EIDS and the International Collating Centre, while contributing her clinical insights and pragmatic approach to the EIDS's mission of advancing equine health through evidence-based practice.

MAVetMB CertAVP(ESM) MRCVS

FOCUS ARTICLE

A FIELD CASE REPORT OF ORTHOFLAVIVUS-ASSOCIATED NEUROLOGICAL DISEASE IN A UK HORSE

Keesjan Cornelisse¹, Andra-Maria Ionescu²

¹ Penbode Equine Vets, North Road, Holsworthy, Devon

² APHA, Woodham Lane, Addlestone, Surrey

Introduction

Orthoflavivirus infections remain a growing concern for equine health in Europe, primarily due to the apparent northerly creep of West Nile Virus (WNV), as outlined in the focus article that appeared in the second quarter 2025 Equine Quarterly Disease Surveillance Report (www.equinesurveillance.org/landing/resources/reports/dsr20252.pdf). According to the European Centre for Disease Prevention and Control (ECDC), over 180 equine WNV outbreaks were reported across 14 European countries by late 2025, with the virus now firmly endemic in much of France, Italy, and Germany [1]. A significant milestone was reached in October 2025 when the Netherlands reported its first-ever equine WNV case. For UK-based horses, the risk is currently categorised as low for resident animals but high for those travelling to endemic regions of the continent.

Tick-borne orthoflavivuses also pose a significant neurological threat, specifically tick-borne encephalitis virus (TBEV) and louping ill virus (LIV). While TBEV was historically considered exotic to the UK, it is now established in ticks in small pockets across England [2], with the APHA launching a dedicated tick-borne disease dashboard in July 2025 to monitor these risks (<https://public.tableau.com/app/profile/siu.apha/viz/Tick-borne-diseases-story/TBD>). LIV, however, is a long-standing endemic threat in the UK, particularly in upland areas of Scotland, Northern England, and Wales. While LIV primarily impacts sheep and red grouse, it is also a known but rare cause of fatal encephalitis in horses in the UK [3]. Against this backdrop, this article describes the clinical presentation, investigation and laboratory diagnostic approach taken to a case of equine neurological disease that occurred in southwest England in early summer 2025, a description of which has previously been outlined by Ionescu *et al.* [4].

Case presentation

A 16-year-old crossbreed gelding residing in Yelverton, Devon (Dartmoor area), was clinically examined in May 2025 under field conditions. The owner reported several days of abnormal clinical signs, including a peculiar gait and apparent weakness in the hindlimbs, particularly when standing to urinate. Despite these signs, the horse demonstrated normal urination and faecal output. The horse was still interested in grazing but had a reduced interest in concentrated feed (veteran mix), supplemented with a general-purpose vitamin and mineral supplement and linseed oil. The gelding's diet did not include haylage.

There were no signs of possible contamination of food or water sources within the locality. Deworming, influenza, and tetanus vaccinations were up-to-date, and no other horses in the herd were displaying similar clinical signs. A farrier had examined the horse the previous day and found no hoof issues, though upper front limb trembling was observed at that time.

Initial clinical findings and management

Upon initial field examination, the gelding appeared quiet yet responsive. Occasional fasciculations were noted over the triceps and neck muscles, but there was no evidence of sweating. Cardiac assessment revealed a regular heart rate of 56 beats per minute and a mild aortic regurgitation murmur. The rectal temperature was elevated at 39.9°C and the tail and anal tones were normal. No lacrimation or nasal discharge were noted. The horse was observed eating and grazing, maintaining a normal head and eye position; pupils were slightly miotic, which may have been related to the bright sunny conditions. Hindquarter weakness was apparent, with a tendency to veer to the right, creating a mild right-sided 'crab walking' appearance. Attempts to back up or raise the head and neck increased hindlimb instability, and lateral neck flexion was mildly impaired on both sides. Blood samples were collected for haematology and biochemistry. Empirical treatment was initiated with non-steroidal anti-inflammatory drugs (NSAIDs: 500 mg flunixin^a IV, followed by 2.5 mg/kg suxibuzon^b twice daily orally) and an oral combination of trimethoprim-sulfadiazine antibiotics^c (25 mg/kg twice daily).

Initial haematology revealed mild monocytosis (0.61×10^9 cells/L; reference 0.5). Biochemistry showed mildly elevated creatine kinase (CK) activity (695 IU/L; reference <433), hyponatraemia (128 mmol/L; reference 134-142), and hypochloraemia (94 mmol/L; reference 97-110). The addition of two tablespoons of table salt to the diet twice daily was advised.

Clinical progression and further investigations

Over the subsequent 24 hours, the gelding became quieter and less interested in grazing, with worsening hindquarter instability and occasional stumbling. Trembling and increased water intake were noted, though faecal and urinary output remained normal. On examination the next day, mild 'crab walking' persisted, and fasciculations were observed over the left upper front limb muscles. There was pronounced weakness in the left front leg, especially when attempting to lift the right front leg. Neck flexion to the left side was now more impaired, although tail and anal tones remained normal and the rectal temperature had normalised to 37.3°C. Due to deteriorating neurological signs, dexamethasone^d was added to the treatment plan (40 mg IV, followed by 30 mg orally once daily for three consecutive days).

The differential diagnoses included lower neck injury, electrolyte imbalances, and an intrathecal infection or meningitis, based on the presence of fever and an inflammatory blood profile. The environment in which the horse was kept was a wooded area with adjacent streams, these conditions were known for vector-borne diseases in local livestock, and ticks had been commonly found on horses during warmer periods. Follow-up blood samples were collected to reassess electrolyte status and for serological testing for vector-borne neurological diseases. This included testing for *Borrelia burgdorferi* (Lyme disease multiplex assay at Cornell University Animal Health Diagnostic Center, USA) and WNV serology under the test to exclude (TTE) scheme at the Animal and Plant Health Agency (APHA), Surrey, as WNV was not considered likely but needed to be excluded.

The horse had never travelled abroad, nor had it been vaccinated for WNV. Repeat blood tests showed normalised serum electrolytes. Initial WNV testing using the IgM capture ELISA was negative for WNV-specific IgM antibodies, but an orthoflavivirus competition ELISA detected non-specific antibodies against the orthoflavivirus family (Table 1, adapted from Ionescu *et al.* [4]), resulting in temporary APHA restrictions until WNV could be conclusively ruled out.

Table 1: Animal and Plant Health Agency (APHA) Orthoflavivirus serology results (adapted from Ionescu *et al.* [4])

Antibody	Test	Company	Result	Interpretation
WNV IgM	ID Screen® West Nile IgM Capture ELISA	Innovative Diagnostics	1st sample: 19.59% Follow-up sample: 12.44%	Negative as both samples' ODs were lower than the 30% of the positive control OD threshold for positivity (S/P%)
Flavi IgG	ID Screen® Orthoflavivirus Competition ELISA	Innovative Diagnostics	1st sample: 30% Follow-up sample: 18.3%	Positive as both samples' ODs were lower than the 40% of the negative control OD threshold for negativity (S/N%). The decreasing S/N% below 30% in the second sample suggests likely seroconversion
TBEV	Plaque reduction neutralisation assay	APHA In house method	1st sample: none available for testing Follow-up sample: PRNT ₉₀ 1:80	Positive as neutralising antibodies detectable up to 1:80 two-fold dilution but cross-neutralisation present
LIV	Plaque reduction neutralisation assay	APHA In house method	1st sample: none available for testing Follow-up sample: PRNT ₉₀ 1:640	Positive as neutralising antibodies detectable up to 1:640 two-fold dilution but cross-neutralisation present
WNV	Plaque reduction neutralisation assay	APHA In house method	1st sample: none available for testing Follow-up sample: No neutralisation	Negative as no virus neutralising antibodies were detectable in undiluted serum

WNV: West Nile virus; TBEV: tick-borne encephalitis virus; ELISA: enzyme linked immunosorbent assay; OD: optical density; PRNT₉₀: 90% plaque reduction neutralisation test

Clinical outcome and final diagnosis

Following the second visit, the horse showed marked improvement over three days, with a stronger gait and increased mobility. The owner could now lift the right front leg, and glucocorticoid treatment was continued (1,000 mg prednisolone^e orally once daily for five days, then 1,000 mg prednisolone orally every other day for five additional doses). The oral trimethoprim-sulfadiazine was continued for seven more days, while suxibuzone dosing was reduced after five days to once daily for another five days. Upon completion of all treatments, the horse was reported as clinically normal. The Lyme multiplex serology for outer surface proteins (Osp) was available at this time and either negative (OSPA: 89 Negative) or equivocal (OSPC: 712 Equivocal; OSPF: 858 Equivocal), indicating a non-specific or very early response.

A third blood sample taken 19 days post-initial visit for follow-up serology demonstrated rising orthoflavivirus antibody titres, consistent with recent orthoflavivirus infection (Table 1). Molecular testing found no evidence of WNV virus in either sample, and virus neutralisation assays confirmed that the antibodies were not WNV-specific [5], thus ruling out WNV and concluding the APHA notifiable disease investigation. Plaque reduction neutralisation assays showed positive orthoflavivirus antibody responses against both LIV and TBEV (due to orthoflavivirus cross-neutralisation), with the stronger response to LIV (>90% plaque reduction up to a titre of 1:640 vs 1:80 for TBEV), making it the most likely orthoflavivirus cause. Given these results and the horse's full recovery, further Lyme multiplex serology was not pursued.

Discussion

In this case, the available resources were limited, and with the horse exhibiting progressively worsening neurological signs, transporting it to a referral clinic was not feasible and cerebrospinal fluid (CSF) collection was not attempted in the field setting. The clinical presentation, which included fever and monocytosis, was suggestive of a neurological disease with a potential infectious origin. The environment, characterised by a high exposure to ticks and mosquitoes during an unseasonably warm period, raised the possibility of viral encephalitis or neuroborreliosis as underlying causes.

The serum amyloid A (SAA) level was within normal limits, which was unexpected, but it may be explained by a less pronounced acute phase protein response in viral infections, or in infections that are localised to shielded sites such as the intrathecal space [6]. Electrolyte disturbances were also observed, and these are known to occur in some inflammatory neurological conditions. Such abnormalities may reflect involvement of the hypothalamus, with potential development of the 'syndrome of inappropriate antidiuretic hormone secretion' (SIADHS) [7]. The observed increase in creatine kinase (CK) activity was mild and was attributed to altered muscle use, the presence of fasciculations, and possibly unobserved collapse episodes.

Initial treatment included antibacterial therapy, pending laboratory results, however, this was discontinued following clinical improvement and the availability of serological findings. In retrospect, doxycycline would have been a preferable option for the treatment of potential Lyme disease [8,9]. NSAIDs are commonly incorporated into treatment protocols for encephalitis, and there are reports suggesting possible benefits of glucocorticoid therapy in cases of viral encephalitis or meningitis [3, 10]. Notably, a marked improvement in the horse's neurological signs was observed after the initiation of glucocorticoid treatment.

Equine orthoflavivirus encephalitis is a well-recognised condition in horses, with WNV being the predominant cause in North America and Europe [11], including more recently in Germany, central France and the Netherlands [1]. The mosquito species *Culex modestus*, which is typically associated with wetland habitats and considered the primary bridge vector for WNV, has now been detected in several regions of the UK, including Kent, Essex, Cambridgeshire, Hampshire, West Sussex, and Dorset [12] and this geographic spread increases the risk of emerging WNV cases within the UK. Notably, West Nile virus (WNV) RNA was detected in two pools of female *Aedes vexans*, an opportunistic WNV vector, collected in July 2023 in Nottinghamshire, England [13]. Ongoing surveillance since 2023 showed no evidence of further WNV circulation in the UK to date.

TBEV and LIV are two closely related zoonotic orthoflavivuses transmitted by the sheep tick, *Ixodes ricinus*. Both viruses can cause neurological disease in humans, as well as in sheep, cattle, and horses [3, 14-17]. In the UK there have been previous suspicions of LIV involvement in horses in the Dartmoor region [3], and TBEV has been detected in ticks collected from England [2]. High seroprevalence rates of TBEV have been reported in horses in endemic areas of Germany and Austria [14], but documented clinical cases in horses remain relatively rare [14-16]. Dartmoor is known to be an area with abundant tick populations, and equine tick infestations are commonly encountered.

This case underscores the importance of considering tick-borne orthoflavivirus infections in the differential diagnosis of horses presenting with neurological signs, particularly in tick-infested, endemic regions and a warming climate.

References

1. European Centre for Disease Prevention and Control, European Food Safety Authority, 2025. Surveillance of West Nile virus infections in humans and animals in Europe, monthly report – data submitted up to 3 December 2025.
2. Holding, M. Tick borne Encephalitis Virus United Kingdom. *Emerg Infect Dis* 2020. 26: p. 90-96
3. Hyde, J., et al. Louping ill in horses. *Veterinary Record*, 2007. 160(15): p. 532-532.
4. Ionescu, A-M., et al. Suspected tickborne virus infection in a horse from Dartmoor, *Veterinary Record*, 2025. 197(4): p. 151-152.
5. Mansfield, K.L., et al. Orthoflavivirus-induced antibody cross-reactivity. *J Gen Virol*, 2011. 92(12): p. 2821-2829.
6. Witkowska-Pilaszewicz. O.D., et al. Serum Amyloid A in Equine Health and disease. *Equine Vet J*, 2019. 51(3): p. 293-298.
7. Weiss. D. Clinical findings of West Nile virus infection in hospitalized patients, New York and New Jersey, 2000. *Emerg Infect Dis*. 2001. 7(4): p. 654-658.

8.Divers. T.J., et al. Lyme disease in horses. *Infectious diseases of the horse*. 2009. p. 286.

9.*Borrelia Burgdorferi* and Lyme disease guidelines. AAEP. 2025.

10. Arturo Leis.A., Sinclair D.J. Lazarus effect of high dose corticosteroids in a patient with West Nile Virus Encephalitis. A coincidence or a Clue. *Front Med (Lausanne)* 2019. 6: p. 81.

11.Bourgeois, M. West Nile Virus Encephalomyelitis. *Infectious diseases of the horse*. 2009.p 83-94.

12.Gov.UK. Mosquito Surveillance Guidance

13.Bruce, R.C., et al. Detection of West Nile virus via retrospective mosquito arbovirus surveillance, United Kingdom, 2025. *Euro Surveill*. 2025. 30(28).

14.de Heus, P., et al. Severe Neurologic Disease in a Horse Caused by Tick-Borne Encephalitis Virus, Austria, 2021. *Viruses*, 2023. 15(10).

15. Magouras, I., et al. Neurological disease suspected to be caused by tick- borne encephalitis virus infection in 6 horses in Switzerland. *JVIM* 2022. 36 (6). p. 2254-2262

16. Conze, T.M., et al. Tick-Borne Encephalitis Virus (TBEV) Infection in Two Horses. *Viruses*, 2021. 13(9).

17. Timoney, P.J., et al. Encephalitis caused by Louping III Virus in a group of Horses in Ireland. *Equine Vet J*, 1976. 8(3): p. 113-117.

Product manufactures

a - Pyroflam™ 50 mg/ml: Norbrook Laboratories Ltd; BT35 6QQ, Northern Ireland

b - Danilon Equidos Gold™ 1.5 g Granules: Animalcare limited; YO32 9BL, UK

c - Trimediazine™ Plain oral powder: Vetoquinol UK Ltd; NN12 7LS, UK

d - Rapidexon® 2 mg/ml solution for injection: Dechra Veterinary products; SY4 4AS, UK

e - Equipred™ 50 mg tablets for horses: Virbac; IP30 9UP, UK

UK Infectious Disease Reports

This section summarises notifiable disease investigations followed by laboratory confirmed endemic infectious disease outbreaks reported in the United Kingdom during the fourth quarter of 2025. Each reported outbreak may involve more than one animal. To view current outbreak reports, see www.equinesurveillance.org/iccview.

No reported outbreak(s) in a region does not necessarily mean the area is free from the disease. When a particular disease is reported as 'endemic', disease outbreaks are common and at an expected level.

NOTIFIABLE DISEASES

The APHA Veterinary Exotic Notifiable Disease Unit (VENDU) co-ordinates the investigation of suspected exotic notifiable disease in Great Britain on behalf of Defra, Welsh Government and Scottish Government. Further information about notifiable diseases is available on <https://www.gov.uk/government/collections/notifiable-diseases-in-animals>.

It should be noted that all information relating to equine notifiable disease investigations (including suspect cases that are subsequently negated) will appear in this section and are not broken down by body system. APHA non-negative test results that are referred to below do not equate to confirmed positive cases and are therefore not included in quarterly laboratory results tables. Confirmed positive results are based on APHA investigations and follow confirmation on official samples. Non-notifiable diseases will appear in their relevant system section.

GLANDERS:

Non-negative serology results were reported from one horse during routine pre-export testing. Following an APHA investigation, official samples tested negative, thereby negating disease.

EQUINE VIRAL ARTERITIS (EVA):

A private veterinary surgeon reported a non-negative EVA antibody titre from a private laboratory from an Andalusian stallion, which was being tested pre-entry to a semen collection centre. A veterinary investigation was conducted, and an official blood sample collected also gave a non-negative result. Semen collection was attempted but was not successful. The owner has had the stallion castrated.

WEST NILE VIRUS (WNV):

There was one test to exclude (TTE) case for WNV completed this quarter, with a negative result reported.

Equine Herpes Virus

EHV-1 NEUROLOGICAL INFECTION

In Q4 2025 two separate outbreaks of EHV-1 neurological infection were reported in southeast England.

The first occurred in Surrey in October, involving an unvaccinated 15-year-old mare that was euthanased after signs progressed to recumbency; the second outbreak was identified in Kent in December in an unvaccinated 16-year-old gelding presenting with acute ataxia.

In both instances, diagnoses were confirmed via PCR testing, and the affected premises implemented voluntary movement restrictions and heightened biosecurity protocols and outbreak clearance testing.

Right: Frequency of reported laboratory diagnosed outbreaks of EHV-1 neurological infection across the UK during 2025 Q4.

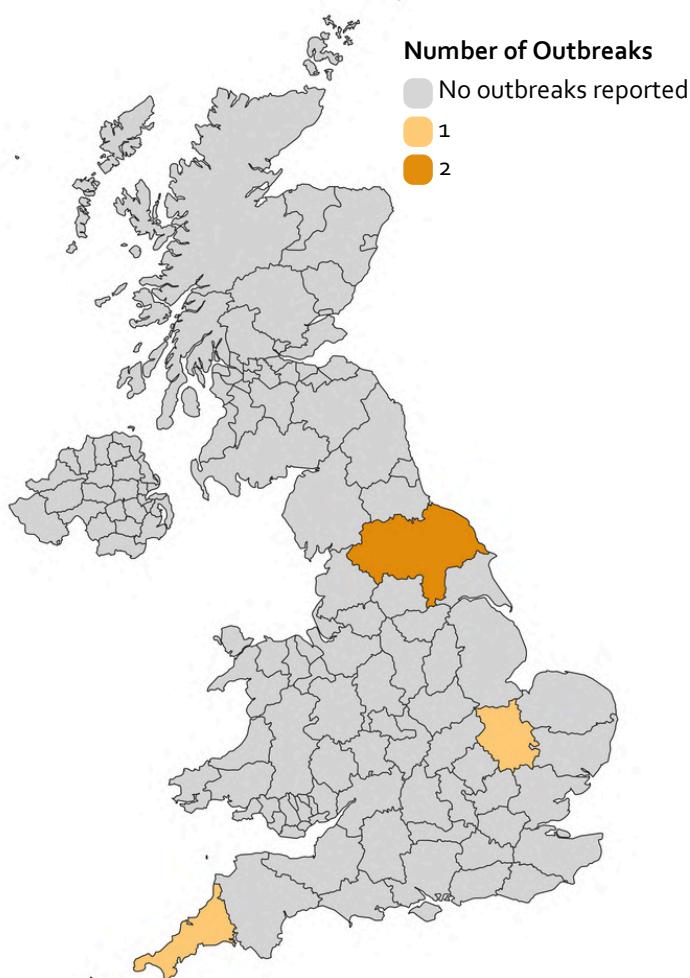
EHV-1 RESPIRATORY INFECTION

In Q4 2025 one outbreak of EHV-1 respiratory infection was reported in November in an unvaccinated four-year-old horse on a premises in Cumbria.

Reported clinical signs included pyrexia, nasal discharge, lethargy, and inappetence, with a positive diagnosis confirmed via an in-house LAMP test on a nasopharyngeal swab. There was one additional horse with clinical signs and 18 others remaining on-site.

Left: Frequency of reported laboratory diagnosed outbreaks of EHV-1 respiratory infection across the UK during 2025 Q4.

EHV-1 REPRODUCTIVE INFECTION


In Q4 2025 there were no reported outbreaks of EHV-1 reproductive infection.

EHV-4 RESPIRATORY INFECTION

SUMMARY

Four outbreaks of EHV-4 respiratory infection were reported to EIDS during Q4 2025, three in November and one in December.

Information regarding these reported outbreaks is summarised in Table 1.

Frequency of reported laboratory diagnosed outbreaks of EHV-4 respiratory infection across the UK during 2025 Q4.

Twelve additional outbreaks of EHV-4 respiratory infection were notified to EIDS, however, no epidemiological data could be obtained. This was either due to the submitting veterinary practice not providing the necessary data or a request for the information not to be circulated. EIDS encourages veterinary surgeons receiving positive laboratory results to complete [EIDS' online reporting form](#) and provide additional details allowing for anonymised reporting of disease occurrence, thereby greatly enhancing the level of ongoing surveillance of equine infectious diseases in the UK.

Table 1: EHV-4 respiratory infection outbreaks reported 1 Oct to 31 Dec 2025.

Total outbreaks reported	4
n	%
Total horses sampled	4 100%
Sample type	
Swab	4 100%
Nasopharyngeal	4 100%
Signalment	
Sex of horse indicated	4 100%
Female	1 25%
Male	3 75%
Breed of horse	4 100%
Native UK pony	2 50%
Native UK horse	1 25%
Crossbreed	1 25%
Age of horse	4 100%
Range	7 months - 11 years
Clinical signs reported*	10
Lethargy	1 10%
Nasal discharge	3 30%
Coughing	3 30%
Lymphadenopathy	1 10%
Pyrexia	2 20%
Vaccination status	3 75%
Unvaccinated	3 100%
Month	
October	0
November	3
December	1

*From 4 diagnoses

Equine Influenza

No cases of equine influenza were reported to EIDS during Q4 2025.

EIDS EQUINE INFLUENZA SERVICES:

HBLB SURVEILLANCE SCHEME

The HBLB equine influenza (EI) testing surveillance scheme provides **free of charge PCR testing** for suspected cases of equine flu in the UK. The laboratory testing is conducted on behalf of EIDS and HBLB by Rossdales Laboratories.

HBLB EI SURVEILLANCE → SIGN UP HERE:

www.equinesurveillance.org/fluenvrol

This scheme assists treating vets in confirming if influenza is present on a premises and in particular where there may be financial constraints on pursuing diagnostic testing. Importantly, the scheme is intended to also encourage testing in EI vaccinated horses with clinical respiratory signs, which may be suggestive of failure of vaccine efficacy.

A prompt diagnosis helps to ensure successful implementation of control measures for an infected premises, limiting spread of flu and its impacts on the industry and welfare of horses. On confirmation of a positive diagnosis of EI, veterinary epidemiologists at EIDS will be able to assist equine vets with relevant outbreak advice.

Identifying risk factors for outbreaks can assist in the design of premises specific biosecurity measures. Virological analyses determine if current vaccines are likely to maintain levels of protection against the circulating field strains of flu virus. Information obtained through this scheme is shared anonymously with stakeholders, through International Collating Centre (ICC) reports, Tell-Tail text alerts and on the EquiFluNet website.

2025 Q4 EI SEQUENCE ANALYSIS

2025 was a quiet year for equine influenza (EI) diagnoses in the UK, with only nine EI viruses confirmed and genetically sequenced by the Horserace Betting Levy Board-funded UK Equine Influenza Surveillance Laboratory based at Cambridge Vet School.

All the 2025 EI viruses were confirmed as belonging to the Florida Clade 1 (FC1) group of EI viruses, isolates of which were first identified in Europe in 2007. FC1 viruses have since replaced the Florida Clade 2 (FC2) viruses in Europe, the last of which was reported in 2016. Imported cases of FC2 EI virus infection remain a potential source of new outbreaks in Europe, and hence a key focus for UK surveillance.

The EI surveillance project closely monitors antigenic changes within the circulating FC1 viruses and have generated viral genome sequence information for all eight influenza genome segments for the majority of the viruses isolated in the UK in 2025.

Several amino acid changes have been found amongst the 10 major viral proteins of the 2025 FC1 viruses, including the antigenically important surface proteins, haemagglutinin (HA) and neuraminidase (NA).

Table 1: Equine influenza virus proteins, amino acid substitutions, and proposed/potential roles

Protein (acronym)	Full Protein Name	Amino Acid Substitutions	Proposed / Potential Role
PB2	Polymerase basic protein 2	A672V, D678G, G682S, I710V	Possible host adaptation
PB1	Polymerase basic protein 1	P455S, I646V	Possible host adaptation
PA	Polymerase acidic protein	P332L, K603Q	Unknown
HA	Haemagglutinin	S30N, R57K, Y233H	Immune evasion / antigenic variation
NA	Neuraminidase	D91Y	Unknown
NS2 (NEP)	Non-structural protein 2 (Nuclear export protein)	S70G	Possible host adaptation

Typically, EI viruses more closely resemble avian-adapted rather than mammalian-adapted influenza viruses. However, the changes observed in the PB1/PB2 viral polymerase complex and the NS2 nuclear export protein in the 2025 viruses suggest something of a shift toward mammalian tropism.

Surveillance of Equine Strangles

	n	%
Total horses sampled	109	100%
Sample type*	120	
Swab	60	50%
Nasopharyngeal	57	95%
Nasal	3	5%
Guttural pouch lavage	50	42%
Other	10	8%
Diagnostic tests		
PCR only requested	91	84%
PCR and culture requested	8	7%
iiPCR	6	6%
iiPCR and qPCR	1	1%
LAMP	1	1%
LAMP and qPCR	1	1%
Culture only requested	1	1%
Signalment		
Sex of horse indicated	79	72%
Female	43	54%
Male	36	46%
Breed of horse	65	60%
Native UK pony	26	40%
Sports horse	22	34%
Crossbreed	6	9%
Native UK horse	10	15%
Non-UK native horse	1	2%
Age of horse		
Range	4 months - 24 years	
IQR	3 - 13 years	
Median	6 years	
Clinical signs reported**	96	
Nasal discharge	33	34%
Pyrexia	25	26%
Glandular swelling	11	12%
Abscess	9	9%
Other	5	5%
Coughing	3	3%
Lethargy	4	4%
Guttural pouch empyema	4	4%
Respiratory noise	2	2%
Reason for sampling reported	70	64%
Total reasons*	83	
Clinically ill horse	40	48%
Post infection screening	11	13%
Strangles suspected	13	16%
Post seropositive ELISA	9	11%
Pre/post movement screening	7	8%
In contact	2	2%
Other	1	1%

*can include multiple entries per submission

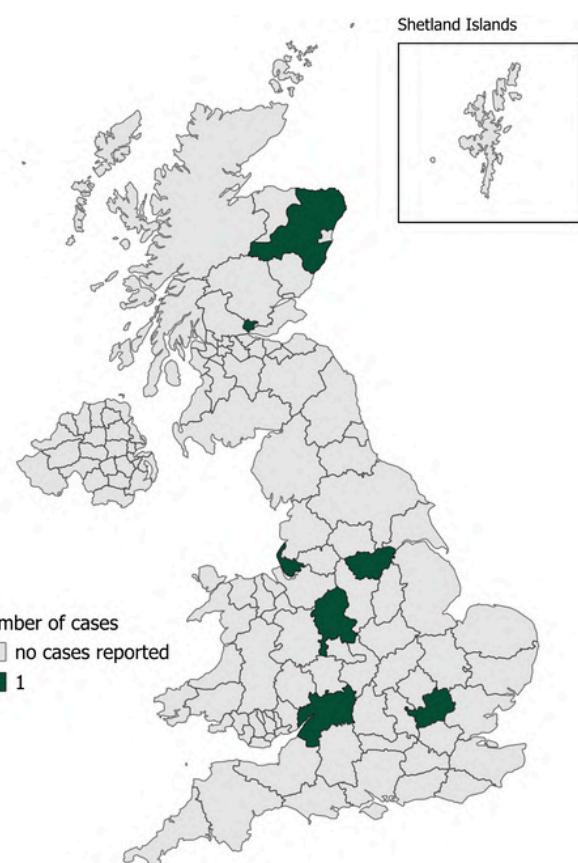
**From 47 diagnoses

Left Table 3: *S. equi* samples reported 1 Oct to 31 Dec 2025.

The Surveillance of Equine Strangles (SES) network enables the ongoing assessment of the disease's true welfare impact, highlighting trends over time and different geographical areas. The SES network is comprised of twelve diagnostic laboratories based across the UK.

A total of 109 cases with positive diagnoses of *S. equi* were reported by SES Laboratory during Q4 2025 from samples submitted by 59 veterinary practices in the UK. Information regarding reported samples is summarised in Table 3.

NB: Figures in the UK Infectious Disease Report may differ, due to EIDS lacking permission to report some outbreaks or not receiving real-time lab data.



Frequency of reported laboratory diagnoses of *S. equi* across the UK from SES during Q4 2025. Diagnoses are mapped by submitting vet practice location.

Equine Grass Sickness

An equine grass sickness (EGS) surveillance scheme was established in spring 2008 facilitating the investigation of changes in geographical distribution and incidence of EGS in Great Britain. Having up to date anonymised reports from across the country provide accurate representation of EGS cases nationwide and is vital to help continue epidemiological research into the disease.

Reporting cases of EGS to the Equine Grass Sickness Fund (EGSF) can be done by either the attending veterinary surgeon or the owner, at www.grasssickness.org.uk/casereports.

Frequency of EGS cases reported to the EGSF across the UK during Q4 2025.

In Q4 2025 seven cases of EGS were reported to EGSF. Cases were reported across England (n= 5, 71%) and Scotland (n= 2, 29%). Information regarding reported cases is summarised in Table 4.

Table 4: Equine Grass Sickness cases reported to the EGSF 1 Oct to 31 Dec 2025.

	n	%
Total cases reported	7	100%
EGS presentation	6	86%
Acute	4	67%
Subacute	2	33%
Chronic	-	-
EGS outcome	7	100%
Survivor	-	-
Non-survivor	6	86%
Unreported	1	14%
EGS diagnoses	6	86%
Clinical signs alone	5	83%
Histological confirmation	1	17%
Month of diagnosis	7	100%
October	4	57%
November	2	29%
December	1	14%
Signalment		
Sex of horse indicated	7	100%
Female	3	43%
Male	4	57%
Breed of horse	7	100%
Native UK pony	2	29%
Native UK horse	4	57%
Non-UK native horse	1	14%
Age of horse	6	86%
Range	4-10 years	
IQR Range	5-6.75 years	

Please note that figures for EGS contained in the laboratory report may differ to the number of cases reported here, which are reported by both owners and veterinary surgeons.

RedWatch

SUMMARY

In Q4 2025, one case of larval cyathostomnosis was reported in December in an eighteen-month-old Suffolk Punch filly on a premises in Suffolk.

Specific laboratory diagnostics and clinical signs were not detailed for this case, and no information was reported regarding the animal's deworming history. There was one additional horse affected.

POST-MORETEM EXAMINATIONS *(for more see page 29)*

During Q4 2025 there were three PME reports which included findings of cyathostomnosis, with this reported as the sole cause of death for one animal.

By engaging with RedWatch, equine vets strengthen the national understanding of small redworm-related disease and support more accurate risk modelling. To help us build this comprehensive picture, **we welcome retrospective reports of clinical cases from across 2025.**

Location of reported cyathostomnosis cases across the UK during 2025 Q4.

REPORT NEW OR RESTROPECTIVE 2025 CLINICAL CASES OF REDWORM

www.equinesurveillance.org/redwatch

REDWATCH: SUPPORTING EQUINE PARASITE SURVEILLANCE DURING THE HIGH-RISK SEASON

BEVA and Equine Infectious Disease Surveillance (EIDS) have partnered to address several misconceptions about small redworm, a parasite that continues to pose serious risks to horses across the UK.

Find the myth bust post on BEVA's news page ([here](#)) for an overview of key myths, the realities behind them and how vets can use the latest surveillance tools to support better clinical decisions.

UK LABORATORY REPORT

VIROLOGY

The results of virological testing for October to December 2025 are summarised in Tables 6 to 9. Please note, APHA's sample population is different to the other contributing laboratories as their tests are principally in relation to international trade.

GASTROINTESTINAL DISEASE

Table 6: Results of virological testing for gastrointestinal diseases between 1 Oct to 31 Dec 2025.
CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
Adenovirus HI	Antibody	42	0	1
Coronavirus PCR	Agent	115	5	1
Rotavirus ELISA	Antibody	0	0	^
Rotavirus-A PCR	Agent	3	0	1
Rotavirus-B PCR	Agent	11	0	2
Rotavirus antigen ELISA/Strip test/LFT	Agent	3	0	1

HI Haemagglutination inhibition, LFT Lateral flow test, ^ no laboratories reporting tested samples this quarter

RESPIRATORY DISEASE

Table 7: Results of virological testing for respiratory diseases between 1 Oct to 31 Dec 2025.
CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
EHV-2 PCR	Agent	36	4	2
EHV-5 PCR	Agent	36	3	2
Influenza HI	Antibody	42	0	1
Influenza PCR (APHA)	Agent	198	0	1
Influenza PCR	Agent	645	0	9
Influenza LAMP	Agent	21	0	1
ERV-A/B CFT	Antibody	12	0	1
ERV PCR	Agent	2	0	1

CFT Complement fixation test, EHV Equine herpes virus, ERV Equine rhinitis virus, HI Haemagglutination inhibition, LAMP loop mediated isothermal amplification

MULTIPLE/MISCELLANEOUS/NEUROLOGICAL DISEASES

Table 8: Results of virological testing for multiple/misellaneous/neurological diseases between 1 Oct to 31 Dec 2025. CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
EHV-1 LAMP	Agent	23	0	1
EHV-1 PCR	Agent	1029	2*	9
EHV-1 VI	Agent	0	0	^
EHV-4 PCR	Agent	1031	51*	9
EHV-4 LAMP	Agent	23	0	1
EHV-4 VI	Agent	0	0	^
EHV-1 IFAT - Ag	Agent	0	0	^
EHV-1/-4 CFT	Antibody	202	9	1
EHV-1/-4 CFT (APHA)	Antibody	0	0	^
EHV-1/-4 PCR (APHA)	Agent	0	0	^
EHV-1/-4 IFAT - Ag	Agent	0	0	^
EHV-8 PCR	Agent	10	1*	1
EIA ELISA	Antibody	208	0	6
EIA Coggins (APHA)	Antibody	7277	0	1
EIA Coggins	Antibody	5	0	2
Hepacivirus PCR	Agent	27	1	1
Parvovirus PCR	Agent	27	0	1
Papilloma virus PCR	Agent	2	1	1
WNV IgM ELISA (APHA)	Antibody	1	0	1
WNV IgG ELISA (APHA)	Antibody	0	0	^
WNV PCR (APHA)	Agent	0	0	^

CFT Complement fixation test, EHV Equine herpes virus, EIA Equine infectious anaemia, IFAT immunofluorescent antibody test, LAMP loop mediated isothermal amplification, VI Virus isolation, WNV West Nile Virus

*EHV figures reported here may differ to the endemic section figures due to non-reporting by vets,

^ no laboratories reporting tested samples this quarter

REPRODUCTIVE DISEASE

Table 9: Results of virological testing for reproductive diseases between 1 Oct to 31 Dec 2025.
 CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
EHV-3 PCR	Agent	2	0	1
EHV-3 VI	Agent	0	0	^
EHV-3 VN	Antibody	0	0	^
EVA ELISA*	Antibody	1532	6	7
EVA PCR (APHA)	Agent	0	0	^
EVA PCR	Agent	163	0	1
EVA VN (APHA)**	Antibody	656	6	1
EVA VN**	Antibody	26	9	1

EVA Equine viral arteritis, EHV Equine herpes virus, VI Virus isolation, VN Virus neutralisation

*Positive samples then undergo VN testing as the confirmatory test

** EVA Artervac vaccine is now available (June 2025) but due to the unavailability since March 2023, all stallions will have lapsed vaccination status at the time of re-vaccination. If sero-positivity at the time of first vaccination cannot be attributed to prior vaccination and confirmed by testing alongside archived serial samples that show a stable or declining titre, the case must be reported to APHA for investigation under the EVA Order 1995. Additionally, mares that are sero-positive within two weeks of mating must also be investigated.

^ no laboratories reporting tested samples this quarter

BACTERIOLOGY

A summary of the diagnostic bacteriology testing undertaken by different contributing laboratories is presented in Tables 10 to 13. The BEVA laboratory registering scheme is for the testing of CEM (*Taylorella equigenitalis*), *Klebsiella pneumoniae* and *Pseudomonas aeruginosa*. Granting and maintenance of approval depends on a laboratory achieving correct results in quality assurance tests and reporting data to this report. BEVA publishes a list of approved laboratories annually. Fifteen BEVA approved laboratories in the UK contributed data for this report, either by providing testing figures from PCR and/or culture testing or by confirming that no tests or positive diagnoses were recorded during the reporting period.

REPRODUCTIVE DISEASE

Table 10: Results of bacteriological testing for reproductive diseases between 1 Oct to 31 Dec 2025.
CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
CEM <i>Taylorella equigenitalis</i> PCR (BEVA)	Agent	255	0	7
CEM <i>Taylorella equigenitalis/asinigenitalis</i> culture* (BEVA)	Agent	998	0	13
CEM <i>Taylorella equigenitalis</i> PCR (APHA)	Agent	82	0	1
CEM <i>Taylorella asinigenitalis</i> PCR (APHA)	Agent	0	0	^
CEM <i>Taylorella equigenitalis/asinigenitalis</i> culture* (APHA)	Agent	2022	0	1
<i>Klebsiella pneumoniae</i> PCR (BEVA)	Agent	255	5	7
<i>Klebsiella pneumoniae</i> culture (APHA)	Agent	49	0	1
<i>Klebsiella pneumoniae</i> culture (BEVA)	Agent	1022	1	13
<i>Klebsiella pneumoniae</i> capsule types 1 PCR	Agent	2	0	1
<i>Klebsiella pneumoniae</i> capsule types 2 PCR	Agent	2	0	1
<i>Klebsiella pneumoniae</i> capsule types 5 PCR	Agent	2	0	1
<i>Pseudomonas aeruginosa</i> PCR (BEVA)	Agent	255	1	7
<i>Pseudomonas aeruginosa</i> culture (APHA)	Agent	49	0	1
<i>Pseudomonas aeruginosa</i> culture (BEVA)	Agent	1022	3	13

BEVA British Equine Veterinary Association approved laboratories, CEM contagious equine metritis (*Taylorella equigenitalis*), **Taylorella asinigenitalis* and *Taylorella equigenitalis* are morphologically indistinguishable by culture and therefore if a sample is positive by culture, it should be screened for both species by multiplex PCR,
^ no laboratories reporting tested samples this quarter

RESPIRATORY DISEASE

Table 11: Results of bacteriological testing for respiratory diseases between 1 Oct to 31 Dec 2025.
CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
<i>Streptococcus equi</i> ELISA Antigen A/C (ISL)†	Antibody	3587	287	4
<i>Streptococcus equi</i> ELISA Antigen A/C (IDVET)†	Antibody	995	135	1
<i>Streptococcus equi</i> PCR	Agent	2328	175	11
<i>Streptococcus equi</i> LAMP	Agent	30	3	1
<i>Streptococcus equi</i> culture	Agent	514	19	10
<i>Rhodococcus equi</i> ELISA#	Antibody	27	3	1
<i>Rhodococcus equi</i> PCR	Agent	17	2	2
<i>Rhodococcus equi</i> culture	Agent	431	2	4
<i>Streptococcus zooepidemicus</i> PCR	Agent	467	150	3
<i>Streptococcus zooepidemicus</i> culture	Agent	290	51	5

LAMP loop mediated isothermal amplification, †seropositivity may be attributed to disease exposure, infection or carrier states, #seropositives include exposure to the virulent form of *R. equi* or the presence of maternally derived antibodies, the *S. equi* agent detection tests presented here are for individual tests, not individual horses. Therefore, they differ from the SES data presented in Table 3, which represents individual cases

MISCELLANEOUS DISEASE

Table 12: Results of miscellaneous bacteriological testing between 1 Oct to 31 Dec 2025.
CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
MRSA culture	Agent	583	2	7
<i>Borrelia burgdorferi</i> ELISA	Antibody	56	14	3
<i>Borrelia burgdorferi</i> PCR	Agent	1	0	1
<i>Burkholderia mallei</i> (Glanders) CFT (APHA)	Antibody	934	0	1
<i>Leptospira</i> MAT	Antibody	0	0	^
<i>Leptospira</i> PCR	Agent	4	2	1
<i>Anaplasma</i> ELISA	Antibody	34	18	3
<i>Anaplasma</i> PCR	Agent	0	0	^

CFT Complement fixation test, LFT Lateral flow test, MAT microagglutination testing antibody, MRSA methicillin resistant *Staphylococcus aureus*, ^ no laboratories reporting tested samples this quarter

GASTROINTESTINAL DISEASE

Table 13: Results of bacteriological testing for gastrointestinal diseases between 1 Oct to 31 Dec 2025.
 CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
<i>Campylobacter</i> culture	Agent	37	2	6
<i>Clostridium perfringens</i> ELISA	Toxin	288	7	2
<i>Clostridium perfringens</i> LFT	Toxin	100	10	3
<i>Clostridium perfringens</i> PCR	Agent	44	5	2
<i>Clostridium difficile</i> ELISA	Toxin	224	21	1
<i>Clostridium difficile</i> LFT	Toxin	157	2	4
<i>Clostridium difficile</i> PCR	Agent	41	0	2
<i>Lawsonia intracellularis</i> IPMA	Antibody	50	19	1
<i>Lawsonia intracellularis</i> PCR**	Agent	117	11	4
<i>Salmonella</i> Typhimurium PCR‡	Agent	225	0	3
<i>Salmonella</i> Typhimurium WGS (APHA)‡	Agent	9	9	1
<i>Salmonella</i> Typhimurium culture‡	Agent	309	5	5
<i>Salmonella</i> Other spp PCR‡	Agent	258	9	7
<i>Salmonella</i> Other spp WGS (APHA)‡	Agent	10	9	1
<i>Salmonella</i> Other spp culture‡	Agent	527	11	9
<i>Enterobacter</i> culture	Agent	1603	115	6
<i>E. coli</i> culture	Agent	1607	173	7

LFT Lateral flow test, IPMA immunoperoxidase monolayer assay, WGS whole genome sequencing, **identified using PCR applied to faeces, ‡Under the Zoonoses Order 1989, it is a statutory requirement to report and serotype positive cases for *Salmonella* spp. A positive case may have repeat samples taken.

APHA SALMONELLA RESULTS

Nineteen samples were submitted this quarter to the Animal and Plant Health Agency (APHA) and eighteen were positive for *Salmonella*. Of these, the serovars reported were *S. Typhimurium* (9 isolates), *S. Agama* (2 isolates), *S. Heidelberg* (2 isolates) and single isolations of *S. Bonn*, *S. Coeln*, *S. Hessarek*, *S. Kottbus* and monophasic *Salmonella Typhimurium*.

S. Typhimurium has been associated with a number of different sources including livestock, dogs, wildlife and feed, and monophasic *S. Typhimurium* is often associated with pigs. *S. Kottbus* and *S. Agama* are found in wildlife including badgers and *S. Coeln* has been found in equine samples and also isolated from animal feed.

This wide range of associations highlights the zoonotic potential of *Salmonella* infections which is particularly important in companion animals such as horses. For more information from APHA about *Salmonella* in Great Britain, please see the 2024 *Salmonella* in animals and feed surveillance report <https://www.gov.uk/government/publications/salmonella-in-animals-and-feed-in-great-britain>

PARASITOLOGY

A summary of parasitology testing undertaken by contributing laboratories is presented in Tables 14 and 15.

ECTOPARASITES AND OTHER SKIN PATHOGENS

Table 14: Results of ectoparasitology testing between 1 Oct to 31 Dec 2025.

CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
Mange <i>Sarcoptes scabiei</i>	Agent	263	0	9
Mange <i>Chorioptes</i> spp	Agent	263	3	9
Mange <i>Trombicula</i> spp	Agent	230	0	7
Mange <i>Demodex equi</i>	Agent	231	0	7
Lice <i>Damalinia equi</i>	Agent	231	8	5
Lice <i>Haematopinus asini</i>	Agent	234	3	5
Ringworm PCR	Agent	118	49	3
Ringworm culture	Agent	58	12	5
Ringworm microscopy	Agent	255	96	7
Dermatophilosis culture	Agent	34	0	2
Dermatophilosis microscopy	Agent	52	6	3
Dermatophyte PCR	Agent	1	0	1
<i>Candida</i> culture	Agent	48	0	2
<i>Candida</i> microscopy	Agent	0	0	^

^ no laboratories reporting tested samples this quarter

ENDOPARASITES

Table 15: Results of endoparasitology testing between 1 Oct to 31 Dec 2025.
 CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
Ascarids faecal exam	Agent	33120	311	13
Strongyles (large/small) faecal exam	Agent	33926	10015	15
Strongyloides faecal exam	Agent	33151	88	11
<i>Craterostomum acuticaudatum</i> culture	Agent	0	0	^
<i>Strongylus edentatus</i> culture	Agent	9	0	1
<i>Strongylus equinus</i> culture	Agent	9	0	1
<i>Strongylus vulgaris</i> culture	Agent	9	0	1
Tapeworm ELISA saliva	Antibody	22512	8302	1
Tapeworm ELISA serum	Antibody	3203	1065	1
Tapeworm faecal exam	Agent	31903	167	9
<i>Oxyuris equi</i> faecal exam	Agent	29587	0	5
<i>Oxyuris equi</i> tape strip	Agent	326	35	3
<i>Dictyocaulus arnfieldi</i> Baermanns	Agent	153	1	3
<i>Fasciola hepatica</i> faecal exam	Agent	74	2	4
<i>Fasciola hepatica</i> sedimentation	Agent	141	3	2
<i>Fasciola hepatica</i> serology	Antibody	0	0	^
Cryptosporidia mZN	Agent	8	0	1
Cryptosporidia PCR	Agent	0	0	^
Cryptosporidia snap test	Agent	7	0	2
Cryptosporidia faecal exam	Agent	8	0	1
Cryptosporidia strip test	Agent	0	0	^
Giardia snap test	Agent	4	2	1
Giardia smear test	Agent	4	0	1
Coccidia faecal exam	Agent	2046	2	4

mZN Modified Ziehl-Neelsen stain , ^ no laboratories reporting tested samples this quarter

TOXICOSIS

A summary of diagnostic toxicosis testing undertaken by contributing laboratories is presented in Table 16. Results for toxicosis are based on histopathology or clinical signs.

Table 16: Results of toxicosis testing between 1 Oct to 31 Dec 2025.

CLs = laboratories contributing tested samples

Test	Samples tested (n)	Positive (n)	CLs (n)
Grass Sickness*	13	7	1
Atypical myopathy/Seasonal Pasture Associated Myopathy	1	1	1
Hepatic Toxicosis - Ragwort	48	6	1
Hepatic Lipidosis	4	1	1
Hepatic Encephalopathy	7	3	1
Tetanus	0	0	^
Botulism	0	0	^

*Figures for EGS contained in the EGSF Report may differ to the number of cases reported here, which are laboratory reported cases only, ^ no laboratories reporting tested samples this quarter

MISCELLANEOUS

A summary of miscellaneous testing undertaken by contributing laboratories is presented in Table 17.

Table 17: Results of miscellaneous testing between 1 Oct to 31 Dec 2025.

CLs = laboratories contributing tested samples

Test	Detection	Samples tested (n)	Positive (n)	CLs (n)
<i>Babesia caballi</i> cELISA (APHA)	Antibody	598	41	1
<i>Babesia caballi</i> IFAT (APHA)	Antibody	655	2	1
<i>Babesia caballi</i> cELISA	Antibody	48	1	1
<i>Theileria equi</i> cELISA (APHA)	Antibody	595	45	1
<i>Theileria equi</i> IFAT (APHA)	Antibody	655	10	1
<i>Theileria equi</i> cELISA	Antibody	48	2	1
Dourine CFT (APHA)*	Antibody	894	0	1
Dourine IFAT (APHA)	Antibody	5	0	1

CFT Complement fixation test, IFAT Immunofluorescent antibody test, *CFT suspect/positive samples are then tested by IFAT as a confirmatory test for Dourine

UK Post-Mortem Examination Reports

Details about *post-mortem* examinations (PME) were reported by **four UK Veterinary Schools and four other contributing laboratories**. In this section PME cases are summarised by age stage and the main body system involved. Over time, it is hoped that additional temporal and spatial data will be made available for inclusion.

During this quarter, PME reports were provided for **67 abortions, five foals and 37 adult horses**.

Right: Regional locations of PME surveillance contributors. Purple shading indicates regions where contributing laboratories are located

ABORTIONS

Between October and December 2025 there were a total of 67 abortions reported.

A summary of their details are provided below in Tables 18 & 19.

Table 18: Post-Mortem Examination (PME) details for abortions reported between 1 Oct to 31 Dec 2025.

PME Diagnosis	Diagnostic certainty		Region of PME contributor
	Suspect	Certain	
Placental	9		
Ischaemic necrosis of the cervical pole	-	4	East & South East
Ischaemia & mineralisation	1	1	East & South East
Ischaemic necrosis	1	-	East & South East
Bacterial placentitis	2	-	South West
Umbilical	27		
Umbilical cord torsion	19	6	East & South East, West & South West
Umbilical cord torsion & urachal dilatation	-	1	East & South East
Umbilical cord compromise	1	-	East & South East

ABORTIONS CONT...

Table 19: Post-Mortem Examination (PME) details continued for abortions reported between 1 Oct to 31 Dec 2025.

PME Diagnosis	Diagnostic certainty		Region of PME contributor
	Suspect	Certain	
No diagnosis reached		31	
No diagnosis reached	-	1	Northern Ireland
Rule out EHV-1 on PCR, no further diagnostics	-	30	East & South East

FOALS

Between October and December 2025 there were five foal deaths reported.

A summary of their details are provided below in Table 20.

Table 20: Post-Mortem Examination (PME) details for foal deaths reported between 1 Oct to 31 Dec 2025.

PME Diagnosis	Total	Region of PME contributor
Gastrointestinal	5	
Ascarid impaction, intestinal perforation	1	Northern Ireland
Ascarid impaction, small intestinal perforation, anoplocephalidae, strongylosis, verminous arteritis	1	East & South East
Colitis, duodenitis, hepatic and pulmonary thromboemboli	1	East & South East
Small colon impaction, typhlocolitis, cyathostominosis	1	East & South East
Small intestinal perforation, ascariasis, septic peritonitis and verminous arteritis	1	East & South East

ADULT DEATHS

Between October and December 2025 there were a total of 33 adults deaths reported.

A summary of their details are provided below in Tables 21 & 22.

Table 21: Post-Mortem Examination (PME) details for adult deaths relating to endocrine, gastrointestinal and hepatic reports between 1 Oct to 31 Dec 2025.

*Cyathostominosis figures reported here may differ to the endemic section figures due to non-reporting by vets

ADULT DEATHS CONT...

Table 22: Post-Mortem Examination (PME) details for adult deaths relating to musculoskeletal, 'no diagnosis reached', and renal, nervous and systemic reports between 1 Oct to 31 Dec 2025.

PME Diagnosis	Total	Region of PME contributor
Musculoskeletal system	6	
Pelvic fracture, ilial wing	1	East & South East
Tendon rupture - site unspecified	1	West & South West
Osteoarthritis - site unspecified	3	West, South West, East & South East
Chronic musculoskeletal injury - site unspecified	1	West & South West
No diagnosis reached	4	
No diagnosis reached, autolysis	3	West, South West, East & South East
Sudden death, no diagnosis reached; myocarditis	1	East & South East
Renal	2	
Acorn (<i>Quercus</i> spp.) poisoning - acute tubular necrosis, vasculitis and vasculopathy, fibronecrotising colitis	1	East & South East
Chronic renal failure, colic	1	West & South West
Nervous	2	
Meningoencephalitis	1	East & South East
Equine dysautonomia (grass sickness)	1	East & South East
Systemic/multisystemic	1	
Systemic Inflammatory Response Syndrome	1	East & South East

**International
Collating Centre**

ICC 2025 Q4 SHORT REPORT

The International Collating Centre (ICC) Q4 2025 report has been circulated to subscribers. A short summary is presented below with the full version available online (<https://equinesurveillance.org/iccview/resources/2025Q4summ.pdf>), countries are coded according to ISO 3166 international standard. The ICC provides almost daily email updates on national and international equine disease outbreaks, contact equinesurveillance@vet.cam.ac.uk to subscribe. Current and previous outbreak reports can be found online in an interactive platform www.equinesurveillance.org/iccview/.

ICC 2025 Q4

**494 reports issued
averaging 8 reports per working day**

RESPIRATORY CONDITIONS (277 reports)

EHV-1

(n=36)

EHV-4

(n=88)

EHV-5

(n=1)

STRANGLES

(n=110)

RHODOCOCCUS EQUI

(n=5)

EQUINE INFLUENZA

(n=37)

REPRODUCTIVE CONDITIONS (12 reports)

CEM

(n=5)

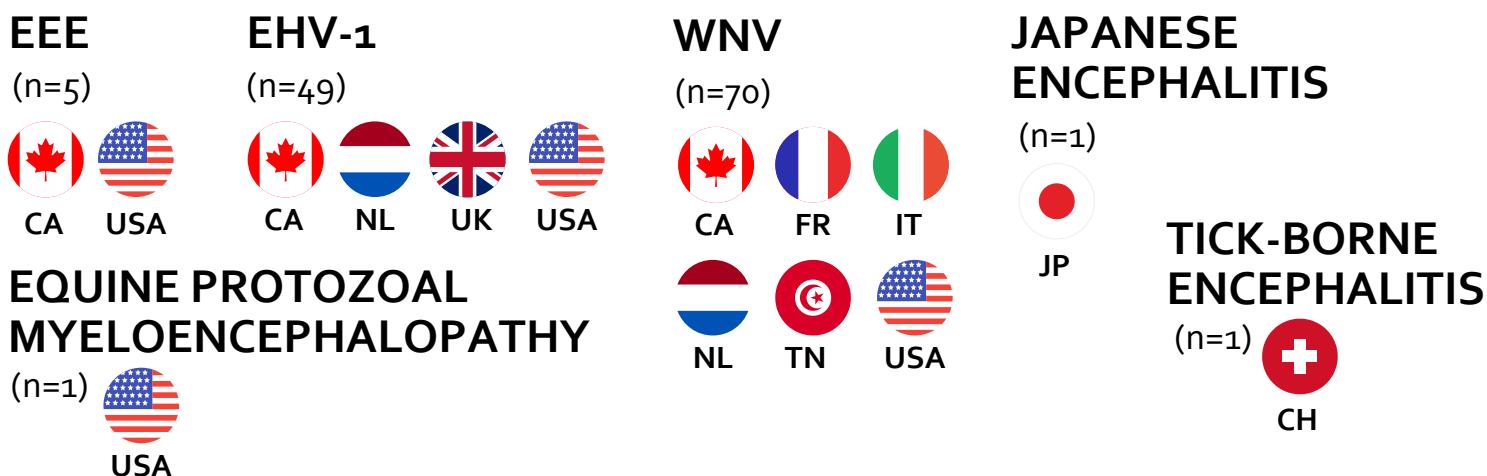
S. ZOOEPIDEMICUS

(n=1)

EHV-1

(n=5)

KLEBSIELLA PNEUMONIAE


(n=1)

GASTROINTESTINAL CONDITIONS (24 reports)

NEUROLOGICAL CONDITIONS (127 reports)

MISCELLANEOUS CONDITIONS (54 reports)

ACKNOWLEDGEMENTS

We are extremely grateful to the following 33 laboratories for contributing data for this report

- Agri-Food & Biosciences Institute of Northern Ireland
- Animal and Plant Health Agency
- Ashbrook Equine Hospital
- Austin Davis Biologics Ltd
- Axiom Veterinary Laboratories Ltd
- B&W Equine Group Ltd
- Biobest Laboratories Ltd
- BioTe Veterinary Laboratories
- The Donkey Sanctuary
- Donnington Grove Veterinary Group
- Hampden Veterinary Hospital
- The Horse Trust
- IDEXX Laboratories
- Langford Veterinary Services
- Liphook Equine Hospital
- MBM Equine
- Nationwide Laboratories
- Newmarket Equine Hospital
- Rainbow Equine Hospital
- Rossdales Laboratories
- Royal Veterinary College
- Sussex Equine Hospital
- Three Counties Equine Hospital
- University of Bristol
- University of Cambridge
- University of Edinburgh
- University of Glasgow
- University of Liverpool
- University of Surrey
- Valley Equine Hospital
- VPG (Veterinary Pathology Group) Exeter
- VPG (Veterinary Pathology Group) Leeds
- Westgate Laboratories Ltd

All laboratories contributing to this report operate Quality Assurance schemes. These schemes differ between laboratories; however, all the contagious equine metritis testing reported was accredited by BEVA, with the exception of the APHA, which acts as the reference laboratory.

We are extremely grateful to the Horserace Betting Levy Board (HBLB), Racehorse Owners Association (ROA) and Thoroughbred Breeders' Association (TBA) for their continued combined contribution to Equine Infectious Disease Surveillance.

We welcome feedback including contributions on focus articles to the following address:

Email: equinesurveillance@vet.cam.ac.uk

Website: www.equinesurveillance.org

Equine Quarterly Disease Surveillance Report

Volume 21, No. 4, Oct – Dec 2025